Light extraction efficiency enhancement of InGaN quantum wells light-emitting diodes with polydimethylsiloxane concave microstructures.

نویسندگان

  • Yik-Khoon Ee
  • Pisist Kumnorkaew
  • Ronald A Arif
  • Hua Tong
  • James F Gilchrist
  • Nelson Tansu
چکیده

Improvement of light extraction efficiency of InGaN light emitting diodes (LEDs) using polydimethylsiloxane (PDMS) concave microstructures arrays was demonstrated. The size effect of the concave microstructures on the light extraction efficiency of III-Nitride LEDs was studied. Depending on the size of the concave microstructures, ray tracing simulations show that the use of PDMS concave microstructures arrays can lead to increase in light extraction efficiency of InGaN LEDs by 1.5 to 2.0 times. Experiments utilizing 2.0 micron thick PDMS with 1.0 micron diameter of the PDMS concave microstructures arrays demonstrated 1.70 times improvement in light extraction efficiency, which is consistent with improvement of 1.77 times predicted from simulation. The enhancement in light extraction efficiency is attributed to increase in effective photon escape cone due to PDMS concave microstructures arrays.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of light extraction efficiency enhancement for thin-film-flip-chip InGaN quantum wells light-emitting diodes with GaN micro-domes.

The enhancement of light extraction efficiency for thin-film flip-chip (TFFC) InGaN quantum wells (QWs) light-emitting diodes (LEDs) with GaN micro-domes on n-GaN layer was studied. The light extraction efficiency of TFFC InGaN QWs LEDs with GaN micro-domes were calculated and compared to that of the conventional TFFC InGaN QWs LEDs with flat surface. The three dimensional finite difference tim...

متن کامل

Experimental exploration of the fabrication of GaN microdome arrays based on a self- assembled approach

The formation of large scale, highly uniform and controllable GaN microdome arrays based on a self-assembled low cost method was investigated. The deposition of a large area, hexagonally close-packed SiO2 microsphere monolayer on top of the III-nitride semiconductor using the dip-coating method was optimized, which leads to surface coverage of 87% of SiO2 on GaN (ideal close-packed microsphere ...

متن کامل

Phosphor-Free Apple-White LEDs with Embedded Indium-Rich Nanostructures Grown on Strain Relaxed Nano-epitaxy GaN

Phosphor-free apple-white light emitting diodes have been fabricated using a dual stacked InGaN/GaN multiple quantum wells comprising of a lower set of long wavelength emitting indium-rich nanostructures incorporated in multiple quantum wells with an upper set of cyan-green emitting multiple quantum wells. The light-emitting diodes were grown on nano-epitaxially lateral overgrown GaN template f...

متن کامل

Effects of In profile on simulations of InGaN/GaN multi-quantum-well light-emitting diodes

Articles you may be interested in Effect of V-defects on the performance deterioration of InGaN/GaN multiple-quantum-well light-emitting diodes with varying barrier layer thickness Three dimensional numerical study on the efficiency of a core-shell InGaN/GaN multiple quantum well nanowire light-emitting diodes Effect of an electron blocking layer on the piezoelectric field in InGaN/GaN multiple...

متن کامل

III–Nitride-Based Microarray Light-Emitting Diodes with Enhanced Light Extraction Efficiency

In this paper, the enhancement of light extraction efficiency in III–nitride-based light-emitting diodes (LEDs) with an array of microstructures is demonstrated numerically and experimentally at the near-ultraviolet (n-UV) spectral region. Two different microstructures are adopted to study the mechanism, including the shallow etching of microstructures on the indium–tin-oxide (ITO) p-contact an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 17 16  شماره 

صفحات  -

تاریخ انتشار 2009